Existence of positive solutions to Kirchhoff type problems with zero mass

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions to Kirchhoff type problems with zero mass

Article history: Received 16 May 2013 Available online 26 August 2013 Submitted by V. Radulescu

متن کامل

Existence of Infinitely Many Solutions for Perturbed Kirchhoff Type Elliptic Problems with Hardy Potential

In this article, by using critical point theory, we show the existence of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential.

متن کامل

Nontrivial solutions of Kirchhoff type problems

In this paper, we study Kirchhoff type problems on a bounded domain. We consider the cases that the nonlinearity is superlinear near zero but asymptotically 4-linear at infinity, and the nonlinearity is asymptotically linear near zero but 4-superlinear at infinity. By computing the relevant critical groups, we obtain nontrivial solutions via Morse theory.

متن کامل

Existence of a positive solution to Kirchhoff type problems without compactness conditions

Article history: Received 20 February 2012 Revised 18 May 2012 Available online 30 May 2012

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.08.030